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When runtime verification is used to monitor safety-critical systems, it is essential that monitoring code
behaves correctly. The Copilot runtime verification framework pursues this goal by automatically generating
C monitor programs from a high-level DSL embedded in Haskell. In safety-critical domains, every piece of
deployed code must be accompanied by an assurance argument that is convincing to human auditors. However,
it is difficult for auditors to determine with confidence that a compiled monitor cannot crash and implements
the behavior required by the Copilot semantics.

In this paper we describe CopilotVerifier, which runs alongside the Copilot compiler, generating a proof
of correctness for the compiled output. The proof establishes that a given Copilot monitor and its compiled
form produce equivalent outputs on equivalent inputs, and that they either crash in identical circumstances or
cannot crash. The proof takes the form of a bisimulation broken down into a set of verification conditions.
We leverage two pieces of SMT-backed technology: the Crucible symbolic execution library for LLVM and
theWhat4 solver interface library. Our results demonstrate that dramatically increased compiler assurance
can be achieved at moderate cost by building on existing tools. This paves the way to our ultimate goal of
generating formal assurance arguments that are convincing to human auditors.
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1 INTRODUCTION

Safety-critical cyber-physical systems (CPSs) are subject to strict regulation to ensure public safety.
Historically, such systems are constructed using conservative requirements-driven practices, yield-
ing predictable systems that are amenable to verification by testing [RTCA 2011; SAE International
2010]. There is increasingly a desire to use off-the-shelf components and employ techniques like
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machine learning to build autonomous systems, but these cannot be assured using traditional
approaches [Cofer 2021; Cofer et al. 2020; Council 2014; Members 2020].

Runtime verification (RV) [Falcone et al. 2013; Goodloe and Pike 2010] addresses this problem by
monitoring a system under observation and responding to property violations during the mission.
For example, an RV system might monitor engine heat levels, aircraft location within an authorized
airspace, or autopilot changes between flight modes. While not static formal verification, RV
provides a significant improvement in assurance for systems over testing alone.
Copilot [Perez et al. 2020; Pike et al. 2010, 2013] is a language and toolchain for writing RV

monitors. Monitors are written in a high-level, stream-based domain-specific language (DSL) that
is embedded in Haskell. Copilot is equipped with a compiler that generates C code, which can then
be linked against other application code for use in production.

When used in safety-critical applications, Copilot monitors also form part of the safety case that
justifies the system’s mission readiness. As a result, monitors must be trustworthy, and trust must
be based on systematic and rigorous evidence that can be audited. Specifically, Copilot monitors
must be trustworthy in two regards. First, the monitor must be validated, meaning that the monitor
enforces the higher-level properties that were intended. Second, the C implementation of the
monitor must be verified, meaning that the compiled code correctly realizes the expected semantics
of the monitor. The problem of validation is about establishing properties of the monitor program
itself, and the problem of verification is about the correctness of the Copilot compiler. A number of
mechanisms can be used to validate and verify the monitors. In recent years, formal methods have
been increasingly accepted as a means of evidence in domains such as civil aerospace. For example,
DO-333 [RTCA 2011] gives official guidance on the use of formal methods in certification practice.
This paper presents CopilotVerifier, which addresses the problem of verification.1 More

precisely, a monitor in the Copilot DSL has an executable semantics and, once compiled, the
resulting C program also has an executable semantics. CopilotVerifier proves that the monitor
and the C program are extensionally equal: given a stream of inputs, the monitor and its compiled
form produce equivalent outputs. We also prove that either (1) both are memory safe, i.e. they
cannot crash, or (2) that they crash exactly on equivalent inputs (the tool supports both modes).

CopilotVerifier takes a translation validation [Pnueli et al. 1998] approach rather than verifying
the compiler for all possible programs. That is, it runs alongside the Copilot compiler and generates
a proof for the particular compiled output. The proof establishes a bisimulation between the Copilot
program and the compiled result. At each program point, it establishes that the state of the Copilot
monitor corresponds to the state of the C program. Our verifier is designed to be push-button:
given a Copilot monitor as input, the verifier automates the steps needed to construct a proof.

This problem of compiler correctness is familiar from research projects such as CompCert [Leroy
2009] and CakeML [Kumar et al. 2014], but these have tended to be multi-year multi-person efforts.
This level of effort was not available to us as an industry project operating under budget constraints.
Our objective was more pragmatic: to maximize our confidence in the Copilot compiler using
off-the-shelf formal methods tools and libraries. We make several design choices that reduce the
cost of building CopilotVerifier but, in some cases, reduce the power of our results (see Section 6).
We judge these to be low-cost tradeoffs relative to the large increase in confidence we have achieved
by successfully completing the CopilotVerifier project in just under one year. Overall, our results
have been heartening: through careful design, CopilotVerifier shows that it is possible to apply
formal assurance to a DSL compiler with modest levels of effort.
Our ultimate goal, of which this project is the first step, is to automatically generate formal

evidence that is convincing to human auditors. By providing a proof of equivalence between the

1For validation, Copilot supports reasoning about monitor specs using theorem provers [Goodloe 2016; Laurent et al. 2015].
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monitor and the specification as supporting evidence, we aim to build a certification argument
based in formal methods rather than software engineering practices.
The rest of the paper is structured as follows. In Section 2, we describe the Copilot language

and illustrate the problem that CopilotVerifier addresses. In Section 3, we give a high-level
description of CopilotVerifier, and we illustrate our work by showing bugs in Copilot that
CopilotVerifier helped identify. Section 4 discusses the bisimulation relation between Copilot
and C programs. Section 5 presents an example of evidence that the verifier produces for assurance
cases. In Section 6 we elaborate on the design trade-offs made in CopilotVerifier. We close the
paper with a discussion on related work (Section 7) and conclusions (Section 8).

2 COPILOT OVERVIEW

Copilot is an embedded domain-specific language (EDSL) implemented as a Haskell library. This
section provides a brief overview of the Copilot language and the aspects of its semantics relevant to
our verification task. Readers interested in further details should consult [Perez et al. 2020]. Readers
familiar with Copilot can skip to Section 2.4 for a discussion of the challenge of verifying Copilot
compilation. Note that we generally refer to programs written in the Copilot DSL as monitors, but
they are also often called specs or specifications, reflecting their role in runtime verification.

2.1 Copilot Streams

The main programming abstraction in Copilot is the stream, which represents a discrete sequence
of values over time. Values include integers, floating-point numbers, booleans, and compound
types like structs and arrays. Copilot programs are evaluated one step at a time, either at regular
intervals or as new data becomes available. The time between each value in a stream is abstract
and application-dependent; it can be thought of as a constant corresponding to a unit of real time.

To interact with the system being monitored, Copilot programs may reference external streams,
which generally represent values obtained from the system being monitored (e.g., sensor data).
From these external streams, other intermediate streams of data are computed, eventually resulting
in boolean streams that capture the conditions being monitored. At execution time, an external
handler function is called whenever a trigger stream evaluates to true, which allows the execution
environment to take action.
Figure 1 shows a complete Copilot program implementing a simple thermostat. The program

monitors an external stream (temp) representing data from a temperature probe, firing a trigger

whenever the temperature (avgTemp) is sufficiently above or below a fixed setpoint, each captured by
a boolean stream in the spec. To provide some robustness against noisy data, the probe input data is
smoothed by computing a sliding window average of the last 5 samples.

This program demonstrates how to construct streams of constant values using constant, as well as
how to cast from a stream of Word8s to a stream of Floats using unsafeCast.2 The thermostat program
also demonstrates some operations on streams whose implementations differ from the Haskell
functions of the same name. Operations such as multiplication (*), subtraction (-), and comparison
(>) work pointwise over the elements of a stream. The (++) operator prepends a list containing a
fixed number of samples to the front of a stream. Invoking sum n s will compute a stream where the
8th element of the stream consists of the sum of the elements in s from indices 8 through 8 + (n − 1).

2.2 Reifying Copilot Specifications

The first step when working with any Copilot monitor (whether to simulate, prove properties,
or generate code) is to reify the monitor into an intermediate representation called Copilot Core.

2This cast is safe, since there is no information loss in this direction. Casting in the other direction could lose information.
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-- External temperature as a

-- byte , from -50C to 100C

temp :: Stream Word8

temp = extern "temperature" Nothing

-- Calculate temperature in Celsius

ctemp :: Stream Float

ctemp =

(unsafeCast temp*constant (150.0/255.0))

- constant 50.0

-- Width of the sliding window

window :: Int

window = 5

-- Compute sliding average of last 5 temps

avgTemp :: Stream Float

avgTemp =

(sum window

(replicate window 19.5 ++ ctemp))

/ fromIntegral window

spec :: Spec

spec = do

trigger "heaton" (avgTemp < 18.0)

[arg avgTemp]

trigger "heatoff" (avgTemp > 21.0)

[arg avgTemp]

Fig. 1. A simple thermostat example.

(Float) s0 = [19.5 ,19.5 ,19.5 ,19.5 ,19.5] ++ ((( cast) Ext_temperature * 0.5882353) - 50.0)

trigger "heaton" =

(((((( s0 + drop 1 s0) + drop 2 s0) + drop 3 s0) + drop 4 s0) / 5.0) < 18.0)

[arg (((((s0 + drop 1 s0) + drop 2 s0) + drop 3 s0) + drop 4 s0) / 5.0)]

trigger "heatoff" =

(((((( s0 + drop 1 s0) + drop 2 s0) + drop 3 s0) + drop 4 s0) / 5.0) > 21.0)

[arg (((((s0 + drop 1 s0) + drop 2 s0) + drop 3 s0) + drop 4 s0) / 5.0)]

Fig. 2. The reified version of spec in Figure 1.

In addition to unfolding helper definitions to produce the intermediate syntax, the reification
step checks that the streams verified are well-formed. Well-formedness is a syntactic check that
ensures that no computations violate temporal causality (i.e., they only depend on “past” values)
and that they require only a finite history to compute. These properties ensure that monitors can
be implemented using a step-by-step strategy that requires only a constant amount of memory.

The reified version of the thermostat example is shown in Figure 2. Here, it becomes clear how
the sliding window calculation is unfolded into a stream computation involving the drop operator
to sum up the 5 most recent values of the stream named s0. Given a number n, drop n drops the first
n elements from a stream, where the stream must have at least n elements of history available. As a
result, the s0 stream must have a history of at least 5 values, and we must initialize it with an array
of constant values. The cast operator is the reified counterpart to unsafeCast in the stream language.

2.3 Compiling to C Code

The CopilotC99 library takes a reified monitor and generates C code. The generated code is not
a standalone program and is intended to be used part of an existing control system. To facilitate
integration, the code is free of external dependencies and targets the C99 subset of the C language.

There is a straightforward translation from each possible stream value to a C value. For instance,
an Int32 in a stream program would be translated to an int32_t in the generated C code, and similarly
for other scalar types. Compound stream values such as structs and arrays are translated to C
structs and arrays with corresponding struct field names and array lengths.

While Copilot streams are conceptually infinite sequences, Copilot-generated C programs only
use a finite amount of memory. Each stream is translated to a ring buffer, implemented as an array
with fixed length equal to the history needed to compute the stream. Each buffer has an associated
index that tracks the current position in the array, which is incremented as time advances.
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extern uint8_t temperature;

void heaton(float arg0);

void heatoff(float arg0);

static float s0[5] = {19.5f, 19.5f, 19.5f,

19.5f, 19.5f};

static size_t s0_idx = 0;

float s0_get(size_t x) {

return s0[( s0_idx + x) % 5];

}

float avgTemp(void) {

return (s0_get (0) + s0_get (1) + s0_get (2)

+ s0_get (3) + s0_get (4)) / 5.0f;

}

void step(void) {

if (avgTemp () < 18.0f) heaton(avgTemp ());

if (avgTemp () > 21.0f) heatoff(avgTemp ());

s0[s0_idx] =

(temperature * 0.5882353f) - 50.0f;

s0_idx = (s0_idx + 1) % 5;

}

Fig. 3. C code generated for Figure 1. The code has been cleaned up for presentation purposes only.

Figure 3 shows the generated C code for the thermostat example. The s0 stream is translated to C
as a ring buffer with 5 elements, just large enough to store the initial 5 temperature values. This ring
buffer will be used to compute the current values for the various streams appearing in the trigger
definitions, and it will be updated based on the current value of the external temperature stream on
each tick. A more complicated monitor may have additional ring buffers of various lengths, each of
which will be updated as necessary.

The step function advances the state of the program by a single tick. The following diagram
shows how step computes subsequent temperatures from the previous time step and inserts into
the appropriate position in the buffer, tracked by the index value s0_idx. This diagram assumes that
the inputs from the external temperature stream begin [150, 95, ...]. One additional temperature value
is computed at each time step, which is marked in this diagram in red italic font.

19.5 19.5 19.5 19.5 19.5 38.2 19.5 19.5 19.5 19.5 38.2 5.9 19.5 19.5 19.5 . . .

s0_idx = 0 s0_idx = 1 s0_idx = 2

Time 0 Time 1 Time 2

⇝ ⇝ ⇝

Aside from updating the ring buffer, the step function is responsible for checking if any of the
monitored conditions have been met and, if so, firing the corresponding triggers. The trigger
functions heaton and heatoff are only given forward declarations; they are meant to be defined by the
application that links against the Copilot monitor.

2.4 The Challenge of Verifying Copilot Compilation

We have seen how the thermostat example has been translated from a stream-based program
(Figure 1) to a C program (Figure 3), but can we be sure that they actually behave in identical
ways? With careful evaluation, one can see that the values in the s0 buffer, as computed by s0_get(0),
s0_get(1), . . . , and s0_get(4) at a given time step =, will match the =th, (= + 1)th, . . . , and (= + 4)th
elements of the avgTemp stream. As a result, the heaton and heatoff trigger functions in C will be called
if and only if the corresponding trigger streams evaluate to true, and the arguments to the trigger
functions will always equal the value of the avgTemp stream at that time step. In this sense, the two
programs exhibit the same behavior. Most Copilot monitors in the wild are significantly more
involved than this example, however, and establishing a correspondence between the monitor and
the generated C code is substantially harder.

3 VERIFIER OVERVIEW

CopilotVerifier runs alongside the CopilotC99 compiler and formally verifies that the results
are correct. It does this by proving that the semantics of the input Copilot monitor correspond to
the semantics of the generated C program. In most cases, the verifier requires no input annotations
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Copilot monitor

Copilot C program

LLVM bitcode

Crucible

Copilot semantics (1)

C semantics (2)

Bisimulation prover (3) All goals verified

Falsified goals

What4

Assurance case

CopilotC99

CopilotTheorem

Clang

CrucibleLLVM

Symbolic simulation

SMT solver

Fig. 4. The architecture of CopilotVerifier.

beyond what is supplied to the compiler (we discuss a few exceptions in Section 6.3). The full
implementation of the verifier can be found in our supplementary artifact [Scott et al. 2023].

The architecture of CopilotVerifier is depicted in Figure 4. At its heart is a comparison between
the input Copilot program, which computes over streams (1), and the compiled C program, which
represents streams in real memory (2). To enable this comparison, both the input and compiled
program are represented by a collection of formulas in What4, an SMT interface library [Hendrix
et al. 2020]. The relationship between the two semantics are then established by the bisimulation
prover (3). CopilotVerifier reports back to the user whether it solved all of the generated proof
goals successfully. If it succeeds, the verifier can produce an assurance argument that the proof is
valid, as explained in Section 5. If not, the verifier identifies which goals were falsified.

Intuitively, programs at both the Copilot and C levels are translated to transition systems
corresponding to the program control-flow graph. The formulas that are generated in What4

encode the effect of a single transition on the state—either streams or memory. The generated
transition systems are intentionally very similar in structure, so the main task of the bisimulation
proof is to demonstrate that the states stay in correspondence (see Section 4).

The translation from Copilot programs to What4 is performed by CopilotTheorem, which we
developed. Because Copilot is a functional language, it is relatively simple to encode the seman-
tics of each program step in an SMT style. For instance, Copilot’s integer arithmetic operations
involving streams translate straightforwardly to SMT-Lib’s fixed-size bitvector operations, so Copi-

lotTheorem would translate the expression x + 42 :: Stream Int32 into an SMT formula resembling
(bvadd x (_ bv42 32))). There are similarly direct translations for all other stream operations with the
exception of floating-point operations, a special case that we discuss further in Section 6.3.1.

It is much more complex to faithfully capture the semantics of a C program. To do this, we lean
on a pre-existing tool, Galois’s Crucible [Christiansen et al. 2019] symbolic simulation library.
Specifically, CopilotVerifier compiles the C program to LLVM bitcode and uses Crucible’s LLVM
backend to simulate it. The result is a collection of What4 formulas that precisely represent the
LLVM program’s semantics. Crucible provides an accurate model of LLVM, intended for industry
formal methods applications. For example, Crucible has previously been applied in tools used to
verify industry cryptographic libraries [Boston et al. 2021; Chudnov et al. 2018; Dockins et al. 2016].

Bugs Found in Copilot. We developed CopilotVerifier by testing it against a variety of examples
used in Copilot’s test suite, which uncovered a number of bugs in Copilot itself. These issues include
memory unsafety [GitHub 2021e, 2022c], incorrect C code generation [GitHub 2021a,d, 2022a,b],
and mismatches between Copilot and C semantics [GitHub 2021b,c]. All of these issues have since
been fixed upstream.
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19.5 19.5 19.5 19.5 19.5 38.2 19.5 19.5 19.5 19.5 38.2 5.9 19.5 19.5 19.5 . . .⇝ ⇝ ⇝

s0_idx = 0 s0_idx = 1 s0_idx = 2

Time 0 Time 1 Time 2 . . .⇝ ⇝ ⇝

(A) (B) (C)

heaton = ff
heatoff = ff

heaton = ff
heatoff = tt

heaton = ff
heatoff = ff

Fig. 5. Two LTSes. The upper LTS represents the stream program in Figure 1. The lower LTS represents the C

program in Figure 3. Transition labels are shared between both LTSes. Transition B fires the heatoff trigger.

4 BISIMULATION PROOF STRUCTURE

The core theorem we wish to prove is extensional equality. That is, the Copilot program and its
compiled C representation behave identically in the input-output behavior that can be observed by
the execution context. Only trigger functions can be observed in Copilot, which leads us to the
following more formal description. A copilot program % and its compiled form & are extensionally
equal if for any arbitrary input stream, the following holds at every time step:

• The same set of trigger functions are called in % and & with the same arguments.
• % has crashed iff � has crashed.

Proving extensional equality between arbitrary programs is difficult, but the Copilot program
and the compiled program are intentionally very similar in their structure. Consider again the
Copilot thermostat program in Figure 1 and the resulting C code in Figure 3 (we will use this as a
running example in this section). Let us assume that the C program’s first = inputs correspond to
the first = values of the external stream inputs. Intuitively, after = calls to the step function in the C
program, the state of the ring buffers should be equal to the value of the corresponding stream
expressions at index =. Moreover, the trigger functions in the C program should be called from the
step function at the same times when the corresponding stream expressions evaluate to true.

We can view a Copilot stream program and its generated C program as labeled transition systems
(LTSes). To prove correctness, CopilotVerifier constructs a bisimulation relation between the
two systems. Intuitively, the proof shows that the two systems start in corresponding states, and
every transition in one system has a transition to a corresponding state in the other system. This
has the effect of proving extensional equality because it shows that trigger functions are called in
corresponding states, and that the two systems transition to crashing states at the same time.

To be precise, CopilotVerifier does not prove the final bisimulation property. Rather, it proves a
set of per-transition properties whose conjunction implies a bisimulation. Verifying the bisimulation
would take us outside the logical fragment which can be easily reasoned about in SMT solvers.

4.1 Programs as Transition Systems

Formally, an LTS consists of a set of states, a set of labels, and a set of labeled transitions between
pairs of states. Consider again the thermostat example (Figures 1 and 3). Let us assume that the
inputs from the external temperature stream begin [150, 95, ...]. In Celsius, these roughly correspond
to 38.2◦ and 5.9◦. Note that the triggers heaton and heatoff will fire if the sliding average of the
previous five temperatures dips below 18

◦ or if it exceeds 21◦, respectively.
Copilot is a stream processing language based on functional programming ideas. As a result, it

has no explicit state in its semantics, beyond the (immutable) input streams and the current time
step. Instead, the value of stream expressions are calculated from the input stream at the current
time step and its prefix. A sequence of transitions for the thermostat stream program is pictured in
the upper diagram of Figure 5.
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In a C program, each state consists of the global memory that contains the ring buffers and their
current indices. The transition relation is defined by the generated step function. An LTS for the
thermostat C program is pictured in the lower diagram of Figure 5. This program’s global memory
only tracks one buffer, s0, which holds the five most recent temperatures. The global memory also
tracks s0_idx, the current index into the buffer. In each transition, a newly sampled value from
temperature is placed in the position that s0_idx points to, after which the index is incremented.
The same set of labels is used for both the stream and C LTSes. Each label is associated with

observable events required for the transition to occur. In the stream spec, the events correspond to
trigger streams evaluating to true. In C, the events correspond to the step function invoking the
corresponding trigger functions.

In Figure 5, each transition records whether the heaton and heatoff triggers were fired. The heatoff

trigger fires in transition (B), as adding 38.2◦ makes the sliding average temperature 23.2◦, which
exceeds the upper bounds that avgTemp checks for. In transition (C), however, heatoff no longer fires,
as adding 5.9◦ lowers the average temperature to 20.5◦.

4.2 Correspondence Relation

We now define a correspondence relation between stream and C program states. Copilot is designed
so that each stream always has a finite window of past values that can be accessed at any point in
the program. Consider a Copilot program containing a stream B with a window value : . Let buf be
the ring buffer in the C program that corresponds to B , and let idx be the current index into buf. A
stream program state is related to a C program state by the correspondence relation if and only if
the value of B at index = + 8 is equal to the value of buf at index (idx + 8) mod : , where 8 ranges from
0 to : − 1. We lift this to sets of streams in the obvious way.
The thermostat example has a single stream definition s0 that retains window = 5 previous values.

At time step 0, the s0 stream’s first five elements are 19.5 due to the use of replicate window 19.5 in its
definition. In C, the values of s0_get(i) (as i ranges from 0 to 4) are also 19.5, as these are the initial
values of the s0 buffer before running step. Therefore, the two programs are in correspondence at
time step 0. We can also intuit that the two programs correspond at subsequent time steps. For
instance, at time step 1, the s0 stream would produce 38.2 as its fifth value, which would match the
value of s0_get(4) after a single invocation of the step function on the C side.

4.3 Proving the Bisimulation

The goal of CopilotVerifier is to demonstrate that the correspondence relation is a bisimulation.
That is, for every pair of states (B, 2) in the correspondence relation, if B transitions to B ′ in the
stream program with label U , then there must exist a C program state 2 ′ such that 2 transitions to
2 ′ with label U . The converse must also be true: if 2 transitions to 2 ′, then there must exist a stream
program state B ′ such that B transitions to B ′ with label U .
It is straightforward to identify which transitions in each LTS correspond to each other, as the

=th time step in the stream program corresponds to the =th invocation of step in the C program. The
main challenge, then, is to demonstrate that the stream values equal the ring buffer values at each
time step. The verifier does this by proving three properties about the correspondence relation:

(1) The initial states of the programs are in the correspondence relation.
(2) For each pair of states (B, 2) in the correspondence relation, there exist a stream program state

B ′, a C program state 2 ′, and a label U such that B transitions to B ′ with label U , 2 transitions
to 2 ′ with label U , and (B ′, 2 ′) is in the correspondence relation.

(3) For each label U used in the transition relations, the triggers for U fire in corresponding ways
in both programs.
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Note that the definition of a bisimulation has two directions: one direction in which the stream
program state B ′ is universally quantified and the C program state 2 ′ is existentially quantified, and
another direction in which the order of quantification is reversed. Property (2), on the other hand,
checks both of these directions simultaneously. This is done for practical reasons, as it is always
clear what the existentially quantified states B ′ and 2 ′ will be after each transition. As such, the
verifier combines both of these directions into a single step.

CopilotVerifier reduces each of these properties to SMT formulas. The proof principle of
bisimulation itself is not amenable to SMT, as it falls outside of the first-order theories that SMT
solvers understand. Likewise, the semantics of Copilot and C could potentially be reduced to SMT,
but it would be impractical to do so. Instead, we reduce the individual proof obligations listed above
into a series of lower-level logical statements that can be represented with SMT queries.

4.3.1 Initial State Correspondence. The first proof obligation that the verifier must discharge is that
the initial states of the two programs correspond. This is tantamount to taking the initial values in
each ring buffer and proving that they are equal to the first : values of the corresponding stream at
time step 0, where : is the length of the ring buffer. Due to the restrictions that Copilot places on
programs, these first : values must be concrete and cannot depend on external inputs. As a result,
this step is simple to translate to SMT queries and only requires evaluation of concrete values.
Thermostat example:Wedemonstrated initial state correspondence for the thermostat example

in Section 4.2. The proof is tantamount to showing that the values of the s0 stream and ring buffer
all equal 19.5 at time step 0, a total of five proof goals.

4.3.2 Transition Correspondence. Most of the proof effort consists of demonstrating that the
correspondence relation is preserved by transitions. In this phase of the proof, we must begin with
completely symbolic program states at an arbitrary time value =. As a result, we must create fresh
symbolic values for each stream definition and its corresponding ring buffer.
More precisely, let B range over the stream definitions, where each B is required to retain :

previous values. Let buf be the ring buffer in the C program that corresponds to B , and let idx be the
current index into buf. For each 8 ranging from 0 to : − 1, we create a symbolic value and assume it
is equal to both the value of B at index = + 8 and the value of buf at index (idx + 8) mod : . We then
advance the symbolic state of the stream and C programs once. Then, for each 9 ranging from 1 to
: , we read the value of B at index = + 9 and check that it is equal to the value of buf at index (idx
+ 9) mod : under the previous assumptions.
Advancing the symbolic state of the stream program is a matter of evaluating each stream

expression at the next time step. For the C program, we advance the symbolic state by invoking
the Crucible symbolic simulator to run the step function, which updates the memory used in
the program. In addition to generating proof goals about bisimulation equivalence conditions,
Crucible can also generate side conditions that relate to the memory safety of the program. For
instance, each memory access into a ring buffer could potentially have out-of-bounds indexing. If
CopilotC99 generates C code correctly, all such accesses should be within bounds, but this must
be checked as a part of the query submitted to the SMT solver. The simulator also generates side
conditions related to C operations with undefined behavior—see Section 4.3.4 for details.
Thermostat example: Ten goals involve checking symbolic values for equality, with two goals

discharged for each element that the s0 stream retains. Thirty goals involve checking if the array
indexes in s0_get and step are within bounds. Four goals involve checking if the trigger functions
fire in equivalent ways, which is described in Section 4.3.3. In total, the verifier discharges 44 goals.

4.3.3 Triggers. The proof must establish that, for each trigger function in the generated C program,
the trigger function is called if and only if the corresponding trigger stream in the stream program
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evaluates to true. In a real setting, the application linked against a Copilot monitor would implement
the trigger functions. However, we are verifying the generated monitor code in isolation, so we
do not have implementations of the trigger functions available. Instead, the verifier creates stub
implementations for each trigger function that captures the arguments and the path condition
under which it was called. After symbolic simulation finishes, the captured arguments and path
condition are asserted to be equivalent to the corresponding trigger stream and arguments from
the stream program.
Thermostat example: Four proof goals arise from checking for equivalent behavior for the

heaton and heatoff triggers in the example. Two goals check whether each trigger is fired in both
programs during a transition. Two goals check that the arguments passed to each trigger correspond.

4.3.4 Partial Operations. Another subtlety of the transition relation step of the proof is how to
handle partial Copilot operations. These range from division, which can fail if the second argument
is zero, to signed integer arithmetic, which can overflow. If a partial operation is used on an input
for which it is not defined, it can result in undefined behavior in the generated C code.
One way to handle partial operations is to take an uncompromising approach: if Crucible

detects undefined behavior when simulating the generated C code, it aborts and causes the proof
to fail. This ensures that Copilot specifications do not have any misbehavior, but, if a spec does
misbehave, the verifier will simply fail and not reveal anything about the rest of the spec.

Another way to handle partial operations is to prove that a Copilot spec is “crash-equivalent” to
its corresponding C program. That is, if the C program invokes a partial operation on undefined
inputs, the verifier will check that this corresponds to an invocation of the corresponding operation
in the Copilot spec on the same inputs. CopilotVerifier supports both the uncompromising
approach and the crash-equivalence approaches as user-configurable options.

To check for crash-equivalence during symbolic simulation, the verifier will analyze any invoca-
tion of an operation in the stream program which could be partial and generate a side condition
that this operation will only be invoked on well defined inputs. During the transition step of the
proof, the verifier will assume these side conditions before starting symbolic simulation. Therefore,
if the simulator generates any side conditions due to partial operations in the C program, they
should be dischargeable using the corresponding side conditions from the stream program.

5 ASSURANCE CASES

CopilotVerifier is the first step in a longer project: integrating formal methods into safety-critical
deployment practices. Our ultimate goal is for Copilot code to be deployed with a safety case largely
constructed by automated means. Existing standards such as DO-333 provide guidance on how
formal methods evidence should be handled. However, there are few examples of successful formal
methods deployments in safety-critical practice. See [Cofer and Miller 2014; Wagner et al. 2017] for
a discussion of the issues involved in certification and formal methods.

To use Copilot in safety-critical systems, the evidence provided by our tools must be understood
and accepted by human auditors. This is challenging because CopilotVerifier performs most of
its reasoning through complicated SMT queries. These queries are difficult to analyze manually
without some way of connecting these queries back to higher-level requirements.

We address this challenge by giving CopilotVerifier an optional setting that, when enabled,
displays each Crucible proof goal that is generated during a successful run of the verifier. Each
proof goal has an accompanying high-level description of what it has demonstrated, such as a
symbolic stream value being equal to its corresponding C ring buffer value. Each proof goal also has
an associated What4 formula and SMT query representing the goal. With this information, each
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Goal 1: The generated C program is traceable to low-level requirements

Strategy 1: Establish a bisimulation relation between the stream and C programs

Goal 2: The initial program states are in the relation

. . .

Goal 3: The relation is preserved across a program transition

Goal 4 (Crucible): Assert that the s0 ring
buffer value at index 0 is equal to the

corresponding stream value after a transition

Goal 5 (Crucible): Assert that
accessing the s0 ring buffer at index 0
is within the bounds of the array

. . .

Goal 5 (What4):
let v121 = bvUrem (bvSum cs0_idx@89:bv 0x4 :[64]) 0x5 :[64]

v122 = bvSum (bvMul 0x4 :[64] v121)

...

Goal 7 (What4):
let v94 = bvSum (bvMul 0x4 :[64] cs0_idx@89:bv)

v100 = bvUrem (bvSum cs0_idx@89:bv 0x1 :[64]) 0x5 :[64]

v1874 = bvUrem (bvSum v100 0x1 :[64]) 0x5 :[64]

...

Goal 8 (SMT):
(declare -fun s0_idx () (_ BitVec 64))

(define -fun x!0 () (_ BitVec 64) (bvadd s0_idx (_ bv4 64)))

(define -fun x!1 () (_ BitVec 64) (bvurem x!0 (_ bv5 64)))

(define -fun x!2 () (_ BitVec 64) (bvmul (_ bv4 64) x!1))

...

Goal 9 (SMT):
(declare -fun s0_idx () (_ BitVec 64))

(define -fun x!0 () (_ BitVec 64) (bvmul (_ bv4 64) s0_idx ))

(define -fun x!1 () (_ BitVec 64) (bvadd s0_idx (_ bv1 64)))

(define -fun x!2 () (_ BitVec 64) (bvurem x!1 (_ bv5 64)))

...

Fig. 6. A sketch of a GSN diagram presenting a CopilotVerifier assurance case for the thermostat programs

from Figures 1 and 3. For brevity’s sake, only a subset of goals are shown.

portion of a proof can be broken down into lower- and lower-level requirements until eventually
reaching SMT, with a chain of evidence linking each intermediate step.

Using the evidence that CopilotVerifier produces, one can construct a complete assurance case
that is more amenable to certification. Figure 6 shows a sketch of what an assurance case would
look like for the thermostat programs from Figures 1 and 3. The evidence is captured using Goal
Structuring Notation (GSN) [Kelly andWeaver 2004], which presents each goal in aCopilotVerifier
safety case in a way that emphasizes the relationship between high-level parent goals and lower-
level child goals. Aside from proof goals, a GSN diagram can also be used to document assumptions
that the verifier makes during verification, such as those discussed in Section 6.

The process of making CopilotVerifier’s evidence be acceptable for auditors is ongoing work.
We plan to work with auditors to iteratively improve formats and explanations towards the goal of
providing convincing evidence in a suitable format.

6 DESIGN TRADEOFFS

When designing CopilotVerifier, our goal was to create a verification tool that achieves high
assurance at modest cost. This section explains the tradeoffs involved in achieving this.

6.1 Trusted Computing Base (TCB)

We trust the underlying C toolchain. CopilotVerifier relies on Clang to compile C into LLVM
bitcode, which becomes the basis for producing the semantics of the C file. Bugs in Clang may affect
the soundness of the verifier. We consider this risk mitigated by the fact that Clang is a well-tested
compiler and that CopilotC99 targets a well-understood subset of C, reducing the likelihood of
triggering compiler bugs. The Copilot developers have experimented using CompCert to verify the
compiled binary code [Goodloe 2016; Leroy 2009], which would remove this portion of the TCB.
However, CompCert does not target many of the processors that the Copilot users utilize.
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We trust that Crucible’s LLVM backend faithfully encodes the semantics of LLVM bitcode.
Errors in this part of Crucible could affect the soundness of the verifier. To justify this trust, we
note that Crux [Tomb 2020], a verification tool also based on Crucible, has been tested on a large
number of C verification problems from the SV-COMP verification competition [Scott et al. 2021].
We also trust that the CopilotTheorem library accurately encodes the semantics of Copilot

stream programs. At present, we do not have a robust way to test these semantics beyond careful
manual engineering and comparison with the Copilot interpreter.

Because of the way we model trigger functions, we make a number of implicit assumptions about
how the implementations of those functions must behave. In particular, we assume that trigger
functions do not modify any memory under the control of the Copilot program, including its ring
buffers and stack. We also assume that the trigger functions are memory-safe and do not perform
any undefined behavior. Responsibility for enforcing these assumptions lies with the user who
supplies definitions for the trigger functions.

6.2 C Compiler Optimizations

CopilotVerifier assumes that all streams in a Copilot spec have corresponding static, global arrays
in the generated LLVM bitcode. This assumption simplifies the work done by CopilotVerifier, as
it can associate each stream with a distinct, top-level array.

While this assumption is safe to make when the generated C code is compiled with low optimiza-
tion settings, it is not safe at higher settings. For instance, consider a stream containing a single
value, which the verifier assumes to be translated to an array of length 1. At -O1 or higher, Clang
replaces length-1 static arrays with scalar values, which breaks the verifier’s assumptions.

The verifier mitigates these issues by always invoking Clang with -O0. This makes the generated
LLVM bitcode more predictable at the expense of only verifying code at lower levels of optimization.

6.3 Limits of Automation

CopilotVerifier aims to be as push-button as possible. However, in exceptional circumstances, a
statement may be true but cannot be automatically verified: that is, the verifier is sound, but not
complete. Users may need to alter the original spec in order to make it amenable to verification.

6.3.1 Floating-Point Support. Copilot provides a variety of floating-point operations, including
transcendental functions and other primitive functions. There is limited SMT solver support for
floating-point values, however, and even less support for robustly handling special functions.
Nevertheless, we wish to have some level of support, as many Copilot monitors make essential
use of floating-point operations. For instance, detecting if an unmanned aircraft system is well
clear [Upchurch et al. 2014] uses the square-root function to compute the lengths of vectors.

CopilotVerifier treats floating-point operations as uninterpreted functions, leaving the seman-
tics of the operations abstract. This is sound, as the verifier need only demonstrate that a Copilot
program applies the same floating-point operations as the corresponding C program, and in the
same order. The downside to this approach is that reasoning about floating-point operations is
somewhat fragile. The verifier relies on the Clang not optimizing the operations to the point where
they differ from the stream program’s operations. As an example, consider ctemp from Figure 1:

ctemp :: Stream Float

ctemp = (unsafeCast temp * constant (150.0/255.0)) - constant 50.0

A subtlety of this definition is that the division operation occurs before being lifted into a stream
with the constant function. As a result, the reified stream in Figure 2 contains 0.5882353, the result of
the division. If we instead express this as the result of dividing two stream values:
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ctemp = (unsafeCast temp) * (constant 150.0 / constant 255.0)) - constant 50.0

then the reified Copilot spec would not evaluate the result of dividing the two streams to 0.5882353.
On the other hand, the generated C code would contain 150.f / 255.0f, and C compilers will perform
constant folding on this, even on low optimization levels. As a result, the stream semantics would
contain an uninterpreted division function but the C semantics would not, leading an SMT solver
to conclude that they are not equivalent.

We take some measures to mitigate this issue, such as invoking C compilers on low optimization
settings (see Section 6.2) and avoiding the use of the --fast-math flag. Under these settings, C compilers,
and Clang in particular, are more reluctant to rearrange floating-point code, which results in more
programs successfully verifying. Nevertheless, the example above shows that this is not foolproof,
and users may need to rearrange code to make the operations align in just the right way.

6.3.2 Invariants for Partial Operations. As detailed in Section 4.3.4, the verifier has a mode for
aborting the proof early if it finds a partial operation applied to undefined inputs. In this mode, the
verifier does not try to infer invariants needed to make operations well defined. For example:

stream :: Stream Int32

stream = extern "stream" Nothing

spec :: Spec

spec = trigger "streamAdd"

(( stream + 1) == 2) [arg stream]

When the abort-early mode for partial operations is enabled, this example will fail to verify, as
stream + 1 could result in signed integer overflow if a value in stream is equal to the maximum value
of an Int32. It is possible, however, that the applications that use this monitor maintain the invariant
that the values in stream are always less than the maximum Int32 size. If that is the case, the user
must communicate this invariant by declaring a property in the spec:

spec :: Spec

spec = do prop "notInt32Max" (forall (stream < constI32 maxBound ))

trigger "streamAdd" ...

Here, prop is used to declare a property named notInt32Max, and the forall combinator is used to
express that the property should hold for all elements in the stream. The verifier must then be
instructed to assume the notInt32Max property during verification so that the addition is well defined.

7 RELATED WORK

Copilot was originally based on Lustre [Caspi et al. 1987] and LOLA [D’Angelo et al. 2005]. Other
similar RV frameworks include RMOR [Havelund 2008], which compiles to C, and Proteus [McClel-
land 2021; McClelland et al. 2021], which compiles to C++. CopilotVerifier shares similarity with
other translation validation–based compilers, such as previous efforts to translate SIGNAL [Pnueli
et al. 1998] and Simulink [Ryabtsev and Strichman 2009] to C, as well as the Alive2 bounded
translation validation tool for LLVM [Lopes et al. 2021].

Most other RV frameworks do not verify their compiled code against the specifications. A notable
exception is Lustre, which boasts a verified compiler named Vélus [Bourke et al. 2017, 2019, 2021].
Vélus is an ambitious project that verifies the Lustre compilation pipeline within the Coq theorem
prover by building on CompCert [Leroy 2009]. This is in contrast to CopilotVerifier’s translation
validation approach, which only allows verifying individually translated programs in isolation.

Vélus first translates Lustre’s stream functions into a synchronous transition code (STC) language
based on state transitions and values rather than streams. STC is, in turn, translated into an object-
oriented language (Obc) with each Lustre node represented as a class with its own memory,
possessing a reset method performing initialization and a step method to process the next instant
in time. Obc is translated into CompCert’s Clight, which is then translated into assembly. Coq is
used to manually prove an equivalence at each translation step. The proofs are aided by a memory
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semantics given in terms of streams of memory trees. The culmination of the effort is a bisimulation
theorem relating the behavior of a Lustre node and the generated assembly code.

An approach grounded inmanual proof can bemore complete thanCopilotVerifier’s automated
approach. For instance, the difficulties that we encounteredwith floating-point operations (Section 6)
could be surmounted using a Coq formalization of floating-point computation [Boldo andMelquiond
2011; Ramananandro et al. 2016]. On the other hand, adapting Vélus to build a verified Copilot
compiler would be non-trivial. Although the core stream languages are very similar, Vélus introduces
complexities such as the object-oriented intermediate language to accommodate Lustre features
not present in Copilot. Alternatively, one could build a verified Copilot compiler from scratch, but
in either case, considerable resources would need to be dedicated to the effort. Our approach to
Copilot verification was influenced by the need to assure an existing compiler for a DSL that is in
use at NASA, and to accomplish our task under significant resource and time constraints, hence
demonstrating the applicability of the technique to many industrial projects.

Previous versions of Copilot [Pike et al. 2012, 2013] performed limited verification of C code by
compiling with two different backends and verifying the equivalence of the generated programs
using CBMC [Clarke et al. 2004]. This approach can potentially catch many of the same issues as
CopilotVerifier, but it does not prove that the C programs match the original Copilot monitors.
Current versions of Copilot use property-based testing [Claessen and Hughes 2000; Fink and

Bishop 1997] for added assurance. Although techniques such as property-based testing could catch
some of the same bugs that CopilotVerifier was able to detect, it would be unlikely to detect
some of the memory safety bugs uncovered by CopilotVerifier (some of which went unnoticed
until recently [GitHub 2022c]).

There have been efforts in Copilot to generate C code that includes Hoare-logic–style contracts
as function comments, where the contracts are derived from parts of the stream program that the
C function should implement. The Frama-C static analyzer [Cuoq et al. 2012] is then used to prove
that the C code satisfies the contracts [Goodloe 2016]. This approach is not fully automated: manual
edits are sometimes required for the generated contracts to pass the analysis checks.

8 CONCLUSIONS

We have presented CopilotVerifier, a verifier that proves correspondences between high-level
Copilot monitors and low-level C code generated by the Copilot compiler. Our aim was to increase
confidence in the Copilot compiler while working within a realistic engineering budget. Through
careful design choices and strategic use of existing tools, we have achieved this goal.
In the future, we plan to use CopilotVerifier to construct assurance cases that are amenable

to certification. Specifically, the NASA tool Ogma uses Copilot to produce complete monitoring
applications for NASA Core Flight System, Robot Operating System 2, and FPrime [Perez et al.
2022]. We plan to extend Ogma to leverage CopilotVerifier to produce evidence of assurance for
the applications generated.
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